SYNTHESIS OF STABLE PROSTACYCLIN ANALOGUES

W Bartmann, G Beck, J. Knolle, R H Rupp Hoechst Aktiengesellschaft, Frankfurt/Main

A synthesis for B-hetero-imino-prostacyclins is described

The short chemical half-life under physiological conditions limits the potential clinical use of prostacyclin $PGI_2^{(1)}$ Therefore the preparation of orally active and chemically stable analogues of PGI2 represents a desirable goal 2) In order to mimic the labile enol ether linkage of PGI₂ our research has focused upon β -hetero-imino-prostacyclins $\underline{1a-c}^{3}$)

We wish to report a synthesis of B-thia-imino-prostacyclins, which allows a variety of structural modifications for this pharmacological interesting class of compounds 4)

The readily available bicyclo[3 2 0]hept-2-en-6-one $\frac{2}{2}$, a general synthetic intermediate for natural prostaglandins⁵⁾ was utilized as starting material for our synthesis Using standard methodology ketone 2 was transformed to ketal 3 in 60 % overall yield⁵⁾ Treatment of ketal 3 with 2-lithio-dithiane (-50 $^{\rm O}{\rm C}$, THF, 24hrs) furnished after acetylation (Ac₂0, Py, r t) the crystalline acetates $\underline{4}$ and $\underline{5}$ in 61 % yield (ratio 4 5, 20 80)

The acetates 4 (mp 130-131 $^{\circ}$ C) and $\underline{5}$ (mp 73-75 $^{\circ}$ C) could be easily separated by preferential crystallisation (petrolether 40°-80° C) of the minor isomer 4 Selective hydrolysis of the dithiane molety in acetate 5 with mercuric oxide/ bortrifluorid-etherate (THF, $\rm H_2O$, 50 $\rm ^{O}C$, 30 min) to the corresponding aldehyde 6, Wadsworth-Emmons-Horner reaction (THF, r t) reduction of the resulting enone ($ZnBH_A$, diglyme, r t) and acetylation (Ac₂0, Py, r t) afforded ketal $\underline{7}$ in 43 % overall yield Exposure of $\underline{7}$ to 0 2 N sulfuric acid in acetonitrile/ water for 24 hrs - yielded ketone 8 in 87 % Beckmann rearrangement of ketone 8 could not be accomplished by standard methods⁶⁾ However upon treatment of 8 with 0-mesitylensulfonylhydroxylamine⁷⁾ (CH₂Cl₂, 0°C, 30min) the crystalline lactam 9 was obtained in 55 % yield, along with 15 % of the isomeric lactam 10 The ratio of lactams 9 to 10 was easily determined by 270 MHz 1 H-NMR(-CONHCH- in 9 = 4 12 and -CHCONH- in $\underline{10}$ = 2.95) The mixture of lactams $\underline{9}$ and $\underline{10}$ was heated for 6 hrs at 80 $^{\rm O}{\rm C}$ in toluene with 10 equiv of ${\rm P_AS_{10}}$ x 4Py to afford thiolactams 11 and 12 in 80 % yield after filtration over silica gel Alkylation of thiolactams $\underline{11}$ and $\underline{12}$ with ethyl γ -bromobutyrate (1 equiv NaH, DME, 12 hrs.) followed by hydrolysis of the acetate groups $(K_2CO_3, MeOH,$ r t , 4 hrs) produced compounds 13, 1b and 14a, 14b in a combined yield of 64 %. The isomeric compounds 13, $\underline{1}b$ and $\underline{14}a$, $\underline{14}b$ were separated easily by a single chromatography on Florisil (EE) The B-thia-iminoprostacyclins 13 and 1b were thus obtained in a combined yield of 39 %

 $\underline{ACKNOWLEDGFMENTS} \quad \text{The authors wish to thank Mr} \quad \text{J} \quad \text{Scheiderest and Mr} \quad \text{K} \quad \text{Spieler for there technical assistance and Dr} \quad \text{Cavagna and Dr} \quad \text{Fehl-haber for the spectroscopic data}$

References and Notes

^{*}Author to whom correspondence should be addressed

^{**}Dedicated to Prof Dr Klaus Weissermel on the occasion of his 60th birth-day

^[1] Moncada, S , Vane, J R , J Med Chem 1980,23,591

^[2] a) Nicolaou, K C., Sipio, W J , Magolda, R E , Seitz, S , Barnette, W E , J Chem Soc , Chem Commun 1978, 1067

- b) Morton, D R , Brokaw, F C , J Org Chem 1979,44,2880
- c) Kojima, K , Sakai, K , Tetrahedron Lett 1978,3743
- d) Gandolfi, C J, Org Chem 1980, 45, 4776
- [3] Bartmann, W , Beck, G , Knolle, J , Rupp, R H ,
 Angew Chem Int Ed Engl 19,819 1980
- [4] Scholkens, B, et al Winter Prostaglandin Conference 1981, Clearwater Florida / USA 01.03 - 05 03 1981
- [5] Newton, R F, Roberts, S M, Tetrahedron 1980, 2163
- [6] a) Smith, P A S Molecular Rearrangements, Vol I, P de Mayo, Ed Interscience, New York, 1965, pp. 483-507
 - b) Donanuma, L G, Org React 1969,11,1
- [7] Tamura, Y , Minamikawa, J , Ikeda, M Synthesis 1977,1
- [8] Satisfactory, NMR, IR and mass spectral data were obtained for each synthetic intermediate using chromatographically homogenous samples

NMR (CDCl₃) and IR data are given for

- (5) $\delta = 5.0$ (m, 1H,-CH-OAc), 4 15 (d, 1H, -S-CH-S-), 3 85 (bs, 4H, $-0-(CH_2)_2-0-$)
 IR(KBr) cm⁻¹ 1730 (C=0 Ester)
- (11) &= 6 8 (s, 1H, NH), 5,5(m, 2H, -CH=CH-), 4,81 (dd, 1H, -CH-0Ac), 4 95 (m, 1H, -CH=CH-CH-0Ac), 4 3 (m, 1H, -CSNH-CH-), 2 85 and 2 52 (m, 3H, $-NHCS-CH_2$ and -CH-), 2 4-2 3 (m, 1H, -CH-CH-CH-), 2 0 (2s, 6H, $-COCH_3$), 0 95 (t, 3H, $-CH_3$) IR(KBr) cm⁻¹ 3140 (NH), 1725 (C=0 Ester), 1525 (S = C-N) mp 94-97 $^{\circ}C$
- $\begin{array}{l} (\underline{12}) \pmb{\$=} 6 \ 75 \ (\text{S}, \ 1\text{H}, \ \underline{\text{NH}}), \ 5,5 \ (\text{m}, \ 2\text{H}, \ -\text{CH} = \text{CH}-), \ 4 \ 90 \ (\text{m}, \ 1\text{H}, \\ -\text{CH}-\text{CH}-\text{CH}-\text{OAc}), \ 4 \ 81 \ (\text{dd}, \ 1\text{H}, \ -\text{CH}-\text{OAc}), \ 3 \ 68 \ \text{and} \ 3 \ 22 \ (\text{dd} \\ \text{bzw} \ \ \text{t}, \ 2\text{H}, \ -\text{CSNH}-\text{CH}_2), \ 3.15 \ (\text{m}, \ 1\text{H}, \ -\text{CH}\text{CSNHCH}_2-), \ 2 \ 52 \ (\text{m}, \ 1\text{H}, \ -\text{CH}-), \ 2 \ 4 \ \ 2 \ 3 \ (\text{m}, \ 1\text{H}, \ -\text{CH}-\text{CH}=\text{CH}-), \ 2 \ 0 \ (2\text{s}, \ 6\text{H}, \ -\text{COCH}_{\widehat{\mathbb{C}}}), \ 0 \ 98 \ (\text{t}, \ 3\text{H}, \ -\text{CH}_3) \\ \text{IR}(\text{CCl}_4) \ \text{cm}^{-1} \ \ 3135 \ (\text{NH}), \ 1730 \ (\text{C=0 Ester}), \ 1525 \ (\text{S} = \text{C-N}) \\ \end{array}$

(Received in Germany 29 April 1982)